Insertion of Alkynes into the Pt–Si Bond of Silylplatinum Complexes Leading to the Formation of 4-Sila-3-platinacyclobutenes and 5-Sila-2-platina-1,4-cyclohexadienes

Makoto Tanabe and Kohtaro Osakada*^[a]

Abstract: The reaction of dimethyl acetylenedicarboxylate (DMAD) with $[Pt(SiHPh_2)_2(PMe_3)_2]$ produces cis-[Pt(CZ=CZ-SiHPh₂)(SiHPh₂)(PMe₃)₂] (cis-1, Z = COOMe) and [Pt(CZ= $\overline{\text{CZ-SiPh}_2}(\text{PMe}_3)_2$] (2) depending on the reaction conditions. cis-1 and 2 are equilibrated in solution at room temperature, and they are isolated by recrystallization of the mixtures. cis-1 is converted slowly in solution into trans-[Pt(CZ=CZ-SiHPh₂)(SiHPh₂)(PMe₃)₂] (trans-1) via intermediate 2 followed by reaction with H₂SiPh₂. DMAD also reacts with [Pt(SiHPh₂)₂(dmpe)] (dmpe 1,2-bis(dimethylphosphino)ethane) = [Pt(CZ=CZ-SiHPh₂)afford to $(SiHPh_2)(dmpe)$] (3). Conversion of 3

4-sila-3-platinacyclobutene into $[Pt(CZ=CZ-SiPh_2)(dmpe)]$ (4) takes place, accompanied by formation of H₂SiPh₂, to give an equilibrated mixture of the two complexes. Crystallographic and spectroscopic data of cis-1, trans-1, and 3 suggest the presence of an intramolecular interaction between the Si-H group of the 3-sila-1-propenyl ligand and Pt via an Si-H-Pt threecenter-four-electron bond in the solid state and in solution. DMAD reacts with 2 to give 5-sila-2-platina-1,4-cyclohexadiene with π -coordinated DMAD,

Keywords: alkynes • metallacycles • platinum · Si ligands

of the products.

[Pt(CZ=CZ-SiPh2-CZ=CZ)(DMAD)- $(PMe_3)_2$ (5), which is also obtained from the reaction of excess DMAD with [Pt(SiHPh₂)₂(PMe₃)₂]. Unsymmetrical six-membered silaplatinacycles without π -coordinated alkyne, [Pt(CZ= $CZ-SiPh_2-CH=\dot{C}X)(PMe_3)_2$ (6: X = COOMe; 7: X = Ph), are prepared analogously from the respective reactions of phenyl acetylene and of methyl acetylene carboxylate with 2. Methyl 2butynolate reacts with 2 at 50°C to form a mixture of the regioisomers $[Pt(CZ=CZ-SiPh_2-CMe=CZ)(PMe_3)_2]$ (8) and [Pt(CZ=CZ-SiPh₂-CZ=CMe)- $(PMe_3)_2$] (9).

Introduction

Pt and Pd complexes containing organosilyl ligands have attracted current attention with regard to the synthetic organic reactions of organosilanes catalyzed by complexes of these metals.^[1] Several research groups have investigated the reactions of alkynes and alkenes with organosilanes catalyzed by Group 10 metal complexes as described below. Early studies by Kumada and Yamamoto revealed that Pt and Ni complexes catalyzed the addition of 1,1,2,2-tetramethyldisilane to diphenyl acetylene to afford 2,5-disila-1,4-cyclohexadienes and siloles, respectively.^[2] They proposed a reaction mechanism which involves the intermediate platinum silvlene complexes and 4-sila-3-platinacyclobutenes, based on the results of thermal conversion of the disilane to the oligosilane, $(SiMe_2)_n$, catalyzed by Pt complexes.^[3] The silylene

[a] Dr. M. Tanabe, Prof. Dr. K. Osakada Chemical Research Laboratory, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan) Fax: (+81)45-924-5224 E-mail: kosakada@res.titech.ac.jp

complexes of Pt⁰ and Pt^{II} were isolated recently by Tilley

et al.^[4] The reaction of phenyl acetylene with [Pt(SiHMe₂)₂-

(PEt₃)₂] was reported to produce 5-sila-2-platina-1,4-cyclohexadiene which liberated the silole upon heating.^[5] The re-

sults suggest that the silole formation takes place via cyclo-

addition of HSiMe₂SiMe₂H to alkynes to give the six-mem-

bered cyclic intermediate followed by expulsion of the Pt from the complex. Both Kumada and Tanaka proposed 4-

sila-3-platinacyclobutene as the intermediate in the reac-

tions. Addition of silacyclopropanes and silacyclopropenes

to alkynes, catalyzed by Ni and Pd complexes, affords the

four-, five-, and six-membered cyclic compounds containing Si.^[6-9] Insertion of the metal center into a C-Si bond of the

three-membered ring of the substrate, to give the 4-sila-3-

metallacyclobutene intermediate, accounts for the formation

There have been only a limited number of the reports of such four-membered metallacycles that have been prepared

and characterized in situ, although many reports of the

above reactions proposed the 4-sila-3-metallacyclobutenes

in the reaction mechanism. Fink reported the preparation of

a silaplatinabenzocyclobutane that has a tendency to be hy-

drolyzed during purification by column chromatography (Scheme 1i).^[10] Ishikawa and Ohshita prepared the 4-sila-3nickellacyclobutene via the reaction of a silacyclopropene with $[Ni(PEt_3)_4]$ and characterized it based on the NMR spectroscopy and its chemical properties (Scheme 1ii). The complex is too unstable to be isolated.^[11,12] In this paper, we report details of the reaction of alkynes with a bis(diphenylsilyl)platinum complex, which leads to the isolation of new 4-sila-3-platinacyclobutenes. We describe the full characterization of the metallacycles, the mechanism of its formation, and its further reaction with alkynes. Part of the work has already been reported in a preliminary form.^[13]

Scheme 1.

Results and Discussion

Formation of 4-sila-3-platinacyclobutenes: The reactions of dimethyl acetylenedicarboxylate (DMAD) with [Pt(SiHPh₂)₂(PMe₃)₂]^[14] form the Pt-containing products as summarized in Scheme 2i. [Pt(SiHPh₂)₂(PMe₃)₂] reacts with equimolar DMAD in the presence of H_2SiPh_2 ([Pt] = 67 mM, $[H_2 \text{SiPh}_2] = 201 \text{ mM}$ in THF) to produce *cis*-[Pt(CZ=CZ-SiHPh₂)(SiHPh₂)(PMe₃)₂] (*cis*-1, Ζ COOMe), which is isolated in 93% yield after reacting for 5 min at room temperature. The reaction did not give a trans isomer of cis-1 under these conditions. Insertion of alkynes into the Pt-Si bond of bis(silyl)platinum(II) complexes, having no Si-H groups, was studied both experimentally and theoretically.^[15] The reaction of DMAD with $[Pt(SiHPh_2)_2(PMe_3)_2]$ in THF ([Pt] = 5.5 mM) for 12 h yielded 4-sila-3-platinacyclobutene, $[Pt(CZ=CZ-SiPh_2)(PMe_3)_2]$ (2), as yellow crystals in 85% yield, along with H₂SiPh₂. Products of both reactions contain cis-1 and 2, although each complex was isolated from the reaction mixtures under the above conditions.

Analytically pure crystals of *cis*-**1** and **2** were characterized unambiguously. These results have already been reported in the preliminary communication.^[13] Complex **2** was also characterized by NMR (¹H, ³¹P{¹H}, ²⁹Si{¹H}) spectroscopy in solution. The ²⁹Si{¹H} NMR spectrum contains a doublet of doublets at δ -63.6 accompanied by a ¹⁹⁵Pt satellite (*J*(Si,P) = 161 and 3 Hz, *J*(Si,Pt) = 778 Hz). 4-Sila-3-nickellacyclobutene, (Et₃P)₂Ni–C(Ph)=C(SiMe₃)-Si(SiMe₃)₂, exhibits the ²⁹Si{¹H} NMR signal of the Si in the four-membered metallacycle at δ -105.4.^[11] The peak position of nickellacyclobutene at higher magnetic fields than **2** is partly

Scheme 2.

due to the SiMe₃ groups bonded to the Si of the four-membered ring. The ¹³C{¹H} NMR spectrum of **2** shows the signals of two vinylic carbons at $\delta = 152.7$ and 170.4. The latter signal, which shows larger coupling constants (*J*(C,P) = 7 and 106 Hz, *J*(C,Pt) = 716 Hz) than the former (*J*(C,P) = 4 and 11 Hz, *J*(C,Pt) = 55 Hz), is assigned to the carbon attached directly to the Pt center.

The NMR spectra of isolated cis-1 contain the signals not only of the complex but also of 2 formed in the solution. Concomitant formation of H₂SiPh₂ is noted in the ¹H NMR spectrum. The NMR signals of *cis*-1 were assigned by comparison of the spectra with those of 2 and of H₂SiPh₂. The ²⁹Si{¹H} NMR signals of *cis*-1 at $\delta = 13.3$ and 2.5 are attributed to the Si nuclei of the 3-sila-1-propenyl ligand and of the SiHPh₂ ligand, respectively. The former signal shows smaller coupling constants (J(Si,P) = 8 Hz, J(Si,Pt) =121 Hz) than the latter (J(Si,P) = 15 and 160 Hz, J(Si,Pt) =1169 Hz). The ¹H NMR spectrum shows the signals at $\delta =$ 5.45 (J(H,Pt) = 40 Hz) and 6.35 (J(H,Pt) = 19 Hz), which were assigned to the Si-H hydrogens of SiHPh₂ ligand and 3-sila-1-propenyl ligand, respectively. Addition of H₂SiPh₂ to a solution of 2 decreases the amount of the complex accompanied by formation of cis-1. These results indicate the attainment of a rapid equilibrium of the complexes in solution (Scheme 2ii). Figure 1 shows the ¹H NMR spectra of the solutions of *cis*-1 with [Pt] = 20 and 2 mm. The former spectrum shows the presence of a mixture of cis-1, 2, and H₂SiPh₂ in similar amounts, while the latter exhibits much larger signals of 2 and H₂SiPh₂ than cis-1. The results are explained by a shift of the equilibrium towards the formation of **2** and H_2SiPh_2 in the more dilute solution.

Compound *cis*-1, which is in rapid equilibrium with 2 in a solution, changes gradually into *trans*-[Pt(CZ=CZ-SiHPh₂)-(SiHPh₂)(PMe₃)₂] (*trans*-1) at room temperature (Scheme 2iii). *trans*-1 was isolated in 57% yield after stirring a solution of *cis*-1 in the presence of H₂SiPh₂ for 30 h and recrystallization of the products, while a change in the ¹H

_ 417

a) [Pt] = 20 mM

Figure 1. ¹H NMR spectra of C_6D_6 solutions of *cis*-1 at a) [Pt] = 20 mm and b) [Pt] = 2.0 mm (400 MHz). The signals of *cis*-1 (\blacksquare) and those of 2 (•) and H₂SiPh₂ formed in the solution are observed.

probably took place by cyclization of the 3-sila-1-propenyl ligand of cis-1 according to Scheme 2ii to give 2 and subsequent addition of H₂SiPh₂ to the Pt-C bond of 2 to regenerate cis-1 or to form trans-1. Although the formation of trans-1 was much slower than the mutual conversion of cis-1 and 2, once formed trans-1 was not turned into 2 nor cis-1. This irreversible formation of trans-1 prevented the determination of precise thermodynamic parame-

ters of the reversible reactions in Scheme 2ii. Thus, the new Pt

NMR spectra during the reaction showed that conversion of cis-1 into trans-1 was complete within 2 d. The reaction

2078 cm⁻¹, which are assigned to the Si-H vibration of the 3-sila-1-propenyl ligand. The lower peak positions than

Table 1. X-ray and NMR data of the γ -Si-H bond and Pt of *cis*-1, *trans*-1, and 3.

Scheme 3.

	cis-1	trans-1	3	Ph ₂ SiH(CH=CH ₂) ^[a]
X-ray data				
$d(Si-H) [Å^{-1}]$	-	1.34	1.60	_
$d(\text{Pt} \cdot \cdot \cdot \text{H}) [\text{Å}^{-1}]$	-	2.93	2.40	_
$d(\text{Pt} \cdot \cdot \cdot \text{Si}) [\text{Å}^{-1}]$	-	3.657	3.540	_
IR data				
$\tilde{\nu}(\text{SiH}) [\text{cm}^{-1}]^{[\text{c}]}$	2098	2078	2116	2124
NMR data				
δ_{SiH} [ppm]	6.35	6.21	6.10	5.11
J(Pt,H) [Hz]	19	14	20	_
J(Si,H) [Hz]	197	196	196 ^[b]	206

[a] Taken from ref. [17]. [b] At 25°C, 198 Hz at 70°C, 195 Hz at -30°C. [c] Complexes cis-1, trans-1, and 3 show the $\tilde{v}(Si-H)$ peak of the diphenylsilyl ligand at 2070, 2049, and 2043 cm⁻¹, respectively. The peak position of [Pt(SiHPh₂)₂(PMe₃)₂] is 2026 cm⁻¹.

complexes shown in Scheme 2i are produced by the reactions among the above complexes. Insertion of the C-C triple bond of DMAD into a Pt-Si bond of $[Pt(SiHPh_2)_2(PMe_3)_2]$ gives *cis*-1 as the initial product which is in rapid equilibrium with a mixture of 2 and H₂SiPh₂. cis-1 was converted gradually into trans-1 via formation of the intermediate 2 and its further reaction with H₂SiPh₂.

Complex [Pt(CZ=CZ-SiHPh₂)(SiHPh₂)(dmpe)] (3) was isolated in 64% yield from the reaction of excess DMAD with $[Pt(SiHPh_2)_2(dmpe)]$. The NMR (¹H and ³¹P{¹H}) spectra of a solution of isolated 3 indicate partial liberation of H₂SiPh₂ and formation of a new Pt complex. The product complex shows no ¹H NMR signal from the Si–H hydrogen. Based on these results as well as a comparison of the ${}^{31}P{}^{1}H$ NMR signals of the mixture with those of 2, the complex formed in the solution is assigned to the 4-sila-3platinacyclobutene with a dmpe ligand 4 (Scheme 3). The conversion of 3 into 4 is rapid and reversible; the ratios between the complexes in a $[D_8]$ toluene solution are 75:25 at 25°C and 30:70 at 90°C.

The molecules of cis-1, trans-1, and 3 contain an interaction of the γ -Si-H hydrogen of the 3-sila-1-propenyl ligand

those of an organosilyl compound with a vinyl group, Ph₂SiH(CH=CH₂) (2124 cm⁻¹),^[17] suggest an interaction between the Si-H group and the Pt center in the solid state. The ¹H NMR signals of the Si-H hydrogen of *cis*-1, *trans*-1, and **3** appear at $\delta = 6.10$ –6.35, which are at lower field positions than that of Ph₂SiH(CH=CH₂) ($\delta = 5.11$).^[17] The signals accompany the splitting from H–Pt coupling (J(H,Pt))= 14–20 Hz). Coupling constants between Si and H of the complexes (J(H,Si) = 196-197 Hz at 25 °C) are smaller than that of $Ph_2SiH(CH=CH_2)$ (206 Hz). The coupling constant of cis-1 decreases slightly on lowering the temperature of the solution (198 Hz at 70°C, 196 Hz at 25°C, and 195 Hz at -30 °C). These results indicate that the agostic interaction exists in the complexes in both the solid state and in solution, although the observed change of the spectroscopic parameters caused by the interaction is much smaller than those observed in the compounds having a three-center-twoelectron bond between the metal center and C-H or Si-H groups.^[18]

Albinati et al. investigated the interaction of a C-H bond of the ligand coordinated with square-planar d⁸ metal center, which causes approach of the C-H group to the

Ph₂HS

RT. 8 h

90 °C

with the Pt center. Table 1 summarizes the bond parameters

and spectroscopic data relating to this issue. The H1 hydro-

gens of trans-1 and 3 are located at the apical position of

the Pt center. The Pt. Si distances, 3.657(2) and 3.540(2) Å,

are shorter than the sum of the van der Waals radii of Pt and Si (3.85 Å).^[16] The IR spectra show peaks at $\tilde{\nu} = 2116$ –

Z-C≡C

Ph₂HS

+ H₂SiPh₂

apical site of the metal center. Pt^{II} and Rh^I complexes with a formylquinoline or iminopyridine ligand show a shift of the ¹H NMR signal of the hydrogen to a low magnetic field position because of deshielding by the filled d_{z^2} orbital of Me_3P the metal center.^[19] They proposed an interaction involving a three-center-four-electron bond to account for the spectroscopic results which differ from the complexes that have a three-center-two-electron bond. The 3-sila-1-propenylplatinum complexes in this study exhibit similar spectroscopic features to the above-mentioned Rh and Pt complexes in which there is an interaction between the C-H group and the metal in the form of a three-center-four-electron bond. C-H and N-H bond activation reactions, triggered by such an interaction of the ligand and the square-planar d₈ metal centers, have already been reported.^[20] Recently, a Ta complex was reported to have a γ -Si-H-Ta interaction that was classified as a three-center-two-electron bond.^[21]

Scheme 4i depicts a plausible pathway for the conversion between cis-1, trans-1, and 2. Intramolecular oxidative addition of the Si-H bond of cis-1 to the Pt center forms an intermediate complex A with a 4-sila-3-platinacyclobutene ring and with hydrido and SiHPh₂ ligands. Reductive elimination of H₂SiPh₂ from the Pt^{IV} complex readily occurs to give the 4-sila-3-platinacyclobutene 2 with a Pt^{II} center. Oxidative addition of H_2SiPh_2 to 2 also gives A, which causes coupling of the hydrido and the Si atom of the four-membered ring to regenerate cis-1. Another oxidative addition product, **B**, which is an isomer of **A**, induces a similar Si-H formation to give trans-1. The Si-H bond activation of trans-1 would form a hexacoordinated intermediate having two silvl ligands at the mutually trans positions. This structure is less favorable than intermediate A that has the two silvl ligands with a highly electron-releasing nature at the cis positions. Thus, according to this mechanism, trans-1 is not converted into cis-1 or 2. Another possible pathway is shown in Scheme 4(ii). Activation of the γ -Si–H bond and Pt-Si bond of cis-1 takes place simultaneously with the formation of new Pt-Si and Si-H bonds to produce the 4-sila-3-platinacyclobutene and H₂SiPh₂. The concerted reaction pathway, which resembles that of o-bond metathesis, also accounts for the smooth and reversible conversion between cis-1 and 2. Conversion of 2 into trans-1 via this intermediate is sterically much less favorable than the conversion into cis-1.

Addition of alkyne to a platinum silylene intermediate was proposed for the formation of 4-sila-3-platinacyclobutene in the previous reports.^[2,5] Although platinum silylene complexes could react with the unsaturated molecules to form the four-membered silaplatinacycles, the reactions of 3-sila-1-propenylplatinum complexes in this study do not involve the Pt silylene intermediate but occur following the direct pathway in Scheme 4. Insertion of DMAD into the Pt–Si bond of the [Pt(SiHPh₂)₂(PMe₃)₂], giving the 3-sila-1propenyl ligand bonded to the Pt center, takes place more rapidly than the α elimination of the diphenylsilyl ligand to form the Pt silylene intermediate.

Reaction of alkynes with the silaplatinacycle: Reaction of excess DMAD with [Pt(SiHPh₂)₂(PMe₃)₂] affords a 5-sila-2-

platina-1,4-cyclohexadiene with π -coordinated DMAD, [Pt(CZ=CZ-SiPh₂-CZ=CZ)(DMAD)(PMe_3)₂] (5), as shown in Equation (1). Complex **5** has a trigonal bipyramidal structure with two PMe₃ ligands at the apical positions. Figure 2 depicts the structure of this molecule which has a

crystallographic C2 symmetry around the Si–Pt axis and a flat six-membered ring. The Pt–P bond (2.346 Å) is longer than that of square-planar Pt^{II} complexes with the phosphine ligands at mutually *trans* positions. Tanaka reported the preparation of the 5-sila-2-platina-1,4-cyclohexadiene

Figure 2. ORTEP drawing of **5** with 50% thermal ellipsoid. One of the two crystallographically independent molecules is shown. The molecule has a symmetrical axis between Pt and Si. Atoms with asterisks are crystallographically equivalent to those having the same number without asterisks. Selected bond lengths [Å] and angles[°]: Pt–P1 2.346(1), Pt–C1 2.119(4), Pt–C7 2.128(4), C1–C2 1.337(5), Si–C2 1.871(4), C7–C7* 1.28(1), P1-Pt-P1* 180.00(7), C1-Pt-C1* 97.6(2), P1-Pt-C1 91.2(2), P1-Pt-C1* 88.8(2), C2-Si-C2* 110.4(3), Pt-C1-C2 128.5(3), Si-C2-C1 127.1(3), C7*-C7-C8 142.0(3).

FULL PAPER

without a coordinated alkyne ligand, [Pt(CPh=CH-SiMe₂- $\overline{CH=CPh}$ (PEt₃)₂], from the reaction of phenyl acetylene with $[Pt(SiHMe_2)_2(PEt_3)_2]$.^[5] We also reported the reaction of ferrocenyl acetylene with [Pt(SiHPh₂)₂(PMe₃)₂] to give 5sila-2-platina-1,4-cyclohexadienes with ferrocenyl pendants.^[22] The five-coordinated structure of 5 is stabilized by π -back donation of Pt to the DMAD ligand that has electron-withdrawing COOMe substituents. Formation of complex 5 probably involves the intermediate complex 2 which causes insertion of DMAD into the Pt-Si bond of the fourmembered cycle as proposed in the previous report.^[5] Scheme 5 depicts the pathway for the formation of 5 in this study based on the above results. The initial reaction of DMAD with the bis(silyl)platinum complex forms the intermediate 3-sila-1-propenylplatinum complex that is in equilibrium with the 4-sila-3-platinacyclobutene. Further insertion of the alkyne into the Pt-Si bond of the 4-sila-3-platinacyclobutene and coordination of another alkyne molecule to the Pt center give the product. The reaction of DMAD with complex 2 also affords the six-membered metallacycle 5 in high yields.

Scheme 5.

Terminal alkynes, such as phenyl acetylene and methyl acetylenecarboxylate, react with **2** to give unsymmetrical six-membered silaplatinacycles, $[Pt(CZ=CZ-SiPh_2-CH=CZ)-(PMe_3)_2]$ (6) and $[Pt(CZ=CZ-SiPh_2-CH=CPh)(PMe_3)_2]$ (7), respectively, as shown in Equations (2) and (3). Complex 7 contains a puckered six-membered 5-platina-2-sila-1,4-cyclohexadiene ring (Figure 3). Phenyl acetylene shows a lower reactivity than methyl acetylenecarboxylate; completion of the

Figure 3. ORTEP drawing of **7** with 50% thermal ellipsoids. Selected bond lengths [Å] and angles [°]: Pt–P1 2.315(4), Pt–P2 2.304(4), Pt–C1 2.08(1), Pt–C9 2.06(1), Si–C2 1.84(1), Si–C10 1.90(1), C1–C2 1.35(2), C1–C3 1.47(2), C9–C10 1.32(2), P1-Pt-P2 95.7(1), P1-Pt-C9 91.1(3), P2-Pt-C1 88.4(4), C1-Pt-C9 84.7(5), C2-Si-C10 102.7(5), Pt-C1-C2 116(1), Si-C2-C1 120(1), Pt-C9-C10 125(1), Si-C10-C9 113(1).

latter reaction requires 24 h at 50°C. Both reactions give the complexes with the substituents at the α carbon of the metallacycle selectively. A preliminary result of the reaction of 1hexyne with **2** also produces a similar complex with a butyl group at the α position of the six-membered metallacycle, although isolation of the product is not feasible because of the low yield of the product. The reaction of methyl 2-butynolate with **2** affords an equimolar mixture of the regioisomers [Pt(CZ=CZ-SiPh₂-CMe=CZ)(PMe₃)₂] (**8**) and [Pt(CZ=CZ-SiPh₂-CZ=CMe)(PMe₃)₂] (**9**) as shown in Equation (4). Repeated recrystallization of the products gives single crystals

of complex 8. Figure 4 shows the molecular structure of the complex which has the COOMe group in the α position. Comparison of the ¹H NMR spectrum of 8 and the mixture of 8 and 9 enabled the assignment of the signals of both complexes (Figure 5). The alkyne having both an electron-withdrawing COOMe group and an electron-donating Me group inserts into the Pt–Si bond without selectivity to give the two possible products in equal amounts. The results suggest that the direction of the alkyne insertion is influenced by the steric bulkiness of the substituents on the alkyne more significantly than their electronic factors.

Scheme 6 depicts the mechanism of insertion of the monosubstituted alkyne into the Pt–Si bond of **2**. Initial coordination of alkyne to an apical position of the square-planar Pt center of **2** is followed by insertion of the alkyne into the Pt–Si bond. The insertion leads to the product with the sub-

Figure 4. ORTEP drawing of **8** with 50% thermal ellipsoids. Selected bond lengths [Å] and angles [°]: Pt–P1 2.29(1), Pt–P2 2.305(8), Pt–C1 1.99(2), Pt–C6 2.08(2), C1–C2 1.29(5), C6–C7 1.36(4), C2–C5 1.49(4), Si–C2 1.91(3), Si–C7 1.90(3), P1-Pt-P2 95.9(4), P2-Pt-C1 86.3(9), P1-Pt-C6 92.8(9), C1-Pt-C6 85.3(12), Si-C2-C1 107.3(20), Si-C7-C6 117.9(20), C2-Si-C7 103.4(14)

Figure 5. ¹H NMR spectra of a) isolated **8** and b) a mixture of **8** and **9**. (400 MHz, C_6D_6). Peaks with an asterisk in (b) are assigned to **9**.

stituent at the α position because alkyne insertion in the opposite direction causes severe steric repulsion between the substituent of the alkyne and the SiPh₂ group. The steric interaction between the substituent and the metal center or PMe₃ ligand in the pathway in Scheme 6 is less severe because of the long Pt–P bond. Results of the reactions of alkynes with alkyl complexes of late transition metals, leading to the alkyne insertion into the M–C bond, were often explained by means of the steric factors of the substituents on the alkynes.^[23]

Scheme 6.

In summary, this study revealed that the 4-sila-3-platinacyclobutene does exist and reacts with the alkynes to form the six-membered cyclic silaplatinacyclohexdiene. The reaction of the bissilylplatinum complex with alkynes to give 4-sila-3platinacyclobutene involves the formation of the 3-sila-1propenylplatinum intermediate and subsequent intramolecular γ -Si-H bond activation by the Pt center.

Experimental Section

General methods: All manipulations of the complexes were carried out using standard Schlenk techniques under argon or nitrogen atmosphere. Hexane, toluene, and THF were distilled from sodium/benzophenone and stored under nitrogen. NMR spectra (¹H, ¹³C, ²⁹Si, and ³¹P) and IR spectra were recorded on JEOL EX-400 and Varian Mercury 300 spectrometers and a Shimadzu FTIR-8100A spectrophotometer, respectively. [Pt(SiHPh₂)₂(PMe₃)₂] was prepared according to the literature method.^[14] [Pt(SiHPh₂)₂(dmpe)] was prepared by heating a 2:1 mixture of H₂SiPh₂ and [PtMe₂(dmpe)]^[24] in toluene for 24 h at 90 °C. DMAD and H₂SiPh₂ and [PtMe₂(dmpe)]^[24] in toluene for 24 h at 90 °C. DMAD and H₂SiPh₂ and Sil¹H] NMR spectra were referenced to external 85 % H₃PO₄ and external SiMe₄, respectively. Elemental analyses were carried out with a Yanaco MT-5 CHN autocorder.

Preparation of cis-[Pt(CZ=CZSiHPh2)(SiHPh2)(PMe3)2] (cis-1): DMAD (82 µL, 0.67 mmol) was added to a THF (10 mL) solution of H₂SiPh₂ (374 µL, 2.01 mmol) and [Pt(SiHPh₂)₂(PMe₃)₂] (479 mg, 0.67 mmol) at room temperature. After stirring the reaction mixture for 5 min, the solvent was removed under reduced pressure. Addition of hexane (3 mL) caused separation of a pale orange solid which was collected by filtration, washed with hexane $(4 \times 3 \text{ mL})$, and dried in vacuo (533 mg, 93%); elemental analysis calcd (%) for C₃₆H₄₆O₄P₂PtSi₂: C 50.52, H 5.42; found: C 51.08, H 5.40. The NMR data of cis-1 were obtained from the spectra of a mixture of 2, cis-1, and H₂SiPh₂, because once isolated cis-1 was soon equilibrated with 2 and H₂SiPh₂ in solution. ¹H NMR (300 MHz, C₆D₆): $\delta = 0.92$ (d, 9H, J(H,P) = 9 Hz, J(H,Pt) = 25 Hz, $P(CH_3)_3$ cis to Si), 1.06 (d, 9H, J(H,P) = 8 Hz, J(H,Pt) = 19 Hz, $P(CH_3)_3$ trans to Si), 3.25 (s, 3H, OCH₃), 3.26 (s, 3H, OCH₃), 5.45 (appt, 1H, J(H,Pt) = 40 Hz, PtSiH), 6.35 (s, 1 H, J(H,Pt) = 19 Hz, J(H,Si) = 197 Hz, =CSiH), 7.08– 7.28 (m, 12 H, C_6H_5 -m and p), 7.74 (d, 2 H, J(H,H) = 7 Hz, C_6H_5 -o), 7.77 $(d, 2H, J(H,H) = 7 Hz, C_6H_5-o), 8.00 (d, 2H, J(H,H) = 7 Hz, C_6H_5-o),$ 8.08 (d, 2 H, J(H,H) = 7 Hz, C_6H_5-o); ³¹P{¹H} NMR (162 MHz, C_6D_6): δ = -30.7 (d, J(P,P) = 23 Hz, J(P,Pt) = 2089 Hz, P cis to Si), -19.3 (d, $J(P,P) = 23 \text{ Hz}, J(P,Pt) = 1455 \text{ Hz}, P \text{ trans to Si}; {}^{29}\text{Si}{}^{1}\text{H}$ NMR (79 MHz, CD_2Cl_2): $\delta = 13.3$ (appt, J(Si,P) = 8 Hz, J(Si,Pt) = 121 Hz, CSi, 2.51 (dd, J(Si,P) = 15 and 160 Hz, J(Si,Pt) = 1169 Hz, PtSi; IR (KBr): $\tilde{\nu} = 2098, 2070$ (Si–H), 1700, 1684 (C=O) cm⁻¹.

Preparation of [Pt(CZ=CZSiPh₂)(PMe₃)₂] (2): DMAD (19 μL, 0.14 mmol) at room temperature was added to a THF (25 mL) solution of [Pt(SiHPh₂)₂(PMe₃)₂] (98 mg, 0.14 mmol). A ¹H NMR spectrum of the solution showed formation of H2SiPh2. After stirring the solution for 12 h, the solvent was evaporated to dryness. Addition of hexane (3.5 mL) to the residue caused separation of a yellow solid which was collected by filtration, washed with hexane (2×3 mL), and dried in vacuo. Recrystallization from THF/hexane gave 2 as yellow crystals (79 mg, 85%). ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 1.38$ (d, 9H, J(H,P) = 9 Hz, J(H,Pt) = 32 Hz, $P(CH_3)_3$ cis to Si), 1.51 (d, 9H, J(H,P) = 8 Hz, J(H,Pt) = 16 Hz, P(CH₃)₃ trans to Si), 3.50 (s, 3H, OCH₃), 3.71 (s, 3H, OCH₃), 7.32-7.33 (m, 6H, C_6H_5 -m and p), 7.72 (m, 4H, C_6H_5 -o); ¹³C[¹H] NMR (100 MHz, CD_2Cl_2 : $\delta = 17.2$ (d, J(C,P) = 22 Hz, J(C,Pt) = 17 Hz, $P(CH_3)_3$ trans to Si), 20.0 (dd, J(C,P) = 4 Hz, J(C,P) = 33 Hz, J(C,Pt) = 45 Hz, P(CH₃)₃ cis to Si), 51.0 (OCH₃), 51.3 (OCH₃), 127.7 (C₆H₅-m), 128.6 (C_6H_5-p) , 136.6 $(C_6H_5-o, J(C,Pt) = 22 \text{ Hz})$, 138.7 (br, J(C,P) = 5 Hz, C_6H_5-i), 152.7 (dd, J(C,P) = 4 Hz, J(C,P) = 11 Hz, J(C,Pt) = 55 Hz, SiC=C), 167.3 (dd, J(C,P) = 4 Hz, J(C,P) = 9 Hz, J(C,Pt) = 161 Hz, PtCC=O), 170.4 (dd, J(C,P) = 7 Hz, J(C,P) = 106 Hz, J(C,Pt) = 106 Hz, J(C,Pt)716 Hz, PtC), 178.2 (dd, J(C,P) = 4 Hz, J(C,P) = 11 Hz, J(C,Pt) = 11 Hz, J(C,Pt)29 Hz, SiCC=O); ³¹P{¹H} NMR (162 MHz, CD₂Cl₂): $\delta = -30.7$ (d, J(P,P) = 16 Hz, J(P,Pt) = 2357 Hz, P cis to Si), -17.2 (d, J(P,P) = 16 Hz,

Chem. Eur. J. 2004, 10, 416-424

www.chemeuri.org © 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

- 421

FULL PAPER

Preparation of trans-[Pt(CZ=CZSiHPh₂)(SiHPh₂)(PMe₃)₂] (trans-1): H₂SiPh₂ (264 uL, 1.41 mmol) at room temperature was added to a toluene (20 mL) solution of cis-1 (122 mg, 0.14 mmol). After 30 h, solvent was removed under reduced pressure. Addition of hexane (3 mL) to the residue caused separation of a yellow solid which was collected by filtration, washed with hexane repeatedly, and dried in vacuo (69 mg, 57 %). Recrystallization from toluene/hexane afforded single crystals of trans-1. ¹H NMR (400 MHz, C₆D₆): $\delta = 1.17$ (vt, 18H, J(H,P) = 4 Hz, J(H,Pt) = 32 Hz, P(CH₃)₃), 3.31 (s, 3H, OCH₃), 3.61 (s, 3H, OCH₃), 4.98 (t, 1H, J(H,P) = 14 Hz, J(H,Pt) = 28 Hz, PtSiH), 6.21 (s, 1H, J(H,Pt) = 14 Hz,J(H,Si) = 196 Hz, =CSiH), 7.17-7.30 (m, 12H, C₆H₅-m and p), 7.93 (d, 4 H, J(H,H) = 7 Hz, $C_6H_5-o)$, 8.01 (d, 4H, J(H,H) = 7 Hz, $C_6H_5-o)$; ¹³C[¹H] NMR (100 MHz, CDCl₃): $\delta = 15.6$ (vt, J(C,P) = 40 Hz, J(C,Pt)= 40 Hz, $P(CH_3)_3$, 50.5 (OCH₃), 50.9 (OCH₃), 127.3 (C_6H_5 -m), 127.7 $(SiC=, J(C,Pt) = 37 \text{ Hz}), 127.9 (C_6H_5-m), 129.4 (C_6H_5-p), 130.2 (C_6H_5-p),$ 134.3 (C_6H_5-i) , 135.7 (C_6H_5-o) , 136.9 $(J(C,Pt) = 16 \text{ Hz}, C_6H_5-o)$, 141.5 $(J(C,Pt) = 24 \text{ Hz}, C_6 H_5 - i), 167.7 (J(C,Pt) = 72 \text{ Hz}, PtCC=O), 177.5$ (J(C,Pt) = 41 Hz, SiCC=O), 214.7 (J(C,P) = 13 Hz, J(C,Pt) not determined, PtC=); ³¹P{¹H} NMR (121 MHz, C₆D₆): $\delta = -22.7$ (s, J(P,Pt) = 2511 Hz); ²⁹Si{¹H} NMR (79 MHz, CDCl₃): $\delta = -16.9$ (br, J(Si,Pt) = 83 Hz, PtSi), -12.5 (br, J(Si,Pt) = 33 Hz, CSi); IR (KBr): $\tilde{v} = 2078, 2049$ (Si–H), 1707, 1690 (C=O) cm^{-1} ; elemental analysis calcd (%) for C₃₆H₄₆O₄P₂PtSi: C 50.52, H 5.42; found: C 51.19, H 5.43.

Preparation of [Pt(CZ=CZ-SiHPh2)(SiHPh2)(dmpe)] (3): DMAD (192 µL, 1.51 mmol) at room temperature was added to a THF (3 mL) solution of [Pt(SiHPh₂)₂(dmpe)] (234 mg, 0.31 mmol). A white solid was precipitated during the reaction. After 8 h, the solid product was collected by filtration, washed with hexane, and dried in vacuo. Recrystallization from THF/hexane gave 3 as colorless crystals (179 mg, 61%). The ¹H NMR spectrum exhibited the signals of not only 3 but also 4 and H₂SiPh₂ formed in the solution. The NMR data of **3** and **4** were obtained from the solution containing a mixture of the complexes. ¹H NMR $(400 \text{ MHz}, C_6 D_6)$: $\delta = 0.73 \text{ (d, 3H, } J(H,P) = 10 \text{ Hz}, J(H,Pt) = 25 \text{ Hz},$ $P(CH_3)_2$ trans to Si), 0.80 (d, 3H, J(H,P) = 9 Hz, J(H,Pt) = 19 Hz, $P(CH_3)_2$ trans to Si), 0.95 (d, 3H, J(H,P) = 10 Hz, J(H,Pt) = 29 Hz, $P(CH_3)_2$ cis to Si), 1.03 (d, 3H, J(H,P) = 10 Hz, J(H,Pt) = 39 Hz, overlapped with the methyl hydrogen signals, P(CH₃)₂ cis to Si), 1.41 (CH₂-THF), 3.25 (s, 3H, PtC=CCOOCH₃), 3.33 (s, 3H, J(H,Pt) = 3 Hz, PtCCOOCH₃), 3.56 (OCH₂-THF), 5.60 (appt, 1H, J(H,Pt) = 36 Hz, PtSiH), 6.10 (s, 1 H, J(H,Pt) = 20 Hz, J(H,Si) = 196 Hz, =CSiH), 7.08-7.23 (m, 10H, C₆ H_5 -m and p) 7.30 (t, 2H, J(H,H) = 7 Hz, C₆ H_5 -p), 7.70 $(d, 4H, J(H,H) = 7 Hz, C_6H_5-o), 7.96 (d, 1H, J(H,H) = 7 Hz, C_6H_5-o),$ 7.97 (d, 1H, J(H,H) = 7 Hz, C_6H_5 -o), 8.07 (d, 2H, J(H,H) = 7 Hz, C₆H₅-o), methylene and methyl hydrogen signals overlapped severely; ¹³C[¹H] NMR (100 MHz, CDCl₃, at -50 °C): $\delta = 10.2$ (d, J(C,P) =22 Hz, J(C,Pt) = 28 Hz, $P(CH_3)_2$, 11.4 (d, J(C,P) = 26 Hz, J(C,Pt) = 26 Hz, J(31 Hz, $P(CH_3)_2$), 12.2 (d, J(C,P) = 35 Hz, J(C,Pt) = 33 Hz, $P(CH_3)_2$), 12.6 (d, J(C,P) = 31 Hz, J(C,Pt) = 51 Hz, $P(CH_3)_2$), 26.6 (dd, J(C,P) = 12.6 (dd, 31 Hz, J(C,P) = 11 Hz, PCH_2), 29.1 (dd, J(C,P) = 35 Hz, J18 Hz, PCH₂), 25.5 (CCH₂-THF), 49.9 (OCH₃), 50.7 (OCH₃), 67.7 (OCH₂-THF), 126.9 (C₆H₅-m), 127.0 (C₆H₅-m), 127.1 (C₆H₅-p), 127.2 (C_6H_5-m) , 127.3 (C_6H_5-p) , 127.7 (C_6H_5-m) , 128.5 (C_6H_5-p) , 129.4 (C_6H_5-m) p), 135.0 (C_6H_5-o), 135.1 (C_6H_5-i), 135.4 (C_6H_5-i), 135.5 (J(C,Pt) = 24 Hz, C_6H_5-o , 135.9 (C_6H_5-o), 137.3 (J(C,Pt) = 28 Hz, C_6H_5-o), 141.3 (d, $J(C,P) = 6 \text{ Hz}, J(C,Pt) = 39 \text{ Hz}, C_6 \text{H}_5 - i), 143.7 \text{ (app t, } J(C,P) = 6 \text{ Hz},$ $J(C,Pt) = 35 \text{ Hz}, C_6 \text{H}_5 - i), 167.0 \text{ (d, } J(C,P) = 9 \text{ Hz}, J(C,Pt) = 103 \text{ Hz},$ PtCC=O), 177.5 (d, J(C,Pt) = 22 Hz, SiCC=O), 205.9 (dd, J(C,P) = 11 Hz, J(C,P) = 94 Hz, J(C,Pt) = 738 Hz, PtC; ${}^{31}P{}^{1}H$ NMR (162 MHz, C_6D_6): $\delta = 20.1$, (d, J(P,P) = 14 Hz, J(P,Pt) = 1921 Hz, P cis to Si), 37.7 (d, J(P,P) = 14 Hz, J(P,Si) = 160 Hz, J(P,Pt) = 1406 Hz, P*trans* to Si); ²⁹Si{¹H} NMR (79 MHz, CDCl₃): $\delta = -15.7$ (app t, J(Si,P) =4 Hz, J(Si,Pt) = 125 Hz, =CSi, -1.18 (dd, J(Si,P) = 13 Hz, J160 Hz, J(Si,Pt) = 1167 Hz, PtSi); IR (KBr): $\tilde{\nu} = 2116$, 2043 (Si-H), 1703, 1690 (C=O) cm⁻¹; elemental analysis calcd (%) for $C_{36}H_{44}O_4P_2Pt$ -Si₂·C₄H₈O: C 51.88, H 5.66; found: C 51.90, H, 5.66.

Data of **4**: ¹H NMR (400 MHz, [D₈]toluene, 90 °C): $\delta = 0.85$ (d, 2 H, J(H,P) = 10 Hz, P(CH_{2})₂P), 0.90 (d, 2 H, J(H,P) = 10 Hz, P(CH_{2})₂P), 1.01 (d, 6 H, J(H,P) = 9 Hz, J(H,Pt) = 32 Hz, P(CH_{3})₂ cis to Si), 1.16 (d, 6 H, J(H,P) = 9 Hz, J(H,Pt) = 17 Hz, P(CH_{3})₂ trans to Si), 3.40 (s, 3 H, OCH₃), 3.68 (s, 3 H, OCH₃), 7.11–7.20 (C₆H₅-m and p and H₂SiPh₂), 7.87 (d, 4 H, J(H,H) = 7 Hz, C₆H₅-o); ³¹P[¹H] NMR (162 MHz, [D₈]toluene, 90 °C): $\delta = 21.2$ (J(P,Pt) = 2177 Hz, P cis to Si), 37.3 (J(P,Pt) = 1345 Hz, P trans to Si).

Preparation of $[Pt(CZ=CZ-SiPh_2-CZ=CZ)(ZC=CZ)(PMe_3)_2]$ (5): DMAD (82 µL, 0.67 mmol) at room temperature was added to a THF (3 mL) solution of [Pt(SiHPh₂)₂(PMe₃)₂] (160 mg, 0.22 mmol); during the course of the reaction the color of the solution turned from yellow to orange. After stirring for 1.5 h, the solvent was evaporated to dryness. Addition of hexane to the residue caused separation of the product as an orange solid which was collected by filtration, washed with hexane (5 mL) and Et₂O (5 mL), and dried in vacuo to give 5 (208 mg, 96%). Recrystallization from Et₂O and hexane gave yellow crystals. ¹H NMR (400 MHz, C₆D₆): $\delta = 1.39$ (appt due to virtual coupling, 18 H, apparent splitting 5 Hz, J(H,Pt) = 19 Hz, $P(CH_3)_3$, 3.20 (s, 6 H, OCH₃), 3.45 (s, 6 H, OCH₃), 3.70 (s, 6H, OCH₃), 7.20-7.28 (m, 6H, C₆H₅-m and p), 8.03 (d, 4H, J(H,H) = 8 Hz, C_6H_5 -o); ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta =$ 14.0 (appt due to virtual coupling, J(C,Pt) = 20 Hz, $P(CH_3)_3$), 50.6 (s, OCH_3 , 50.8 (br, OCH_3), 52.0 (s, OCH_3), 93.8 (d, J(C,P) = 6 Hz, J(C,Pt)= 195 Hz, $C \equiv C$), 126.9 (C_6H_5 -m), 128.9 (C_6H_5 -p), 134.3 (C_6H_5 -i), 136.2 $(J(C,Pt) = 69 \text{ Hz}, PtC=C), 136.5 (C_6H_5-o), 161.2 (J(C,Pt) = 20 \text{ Hz}, C=$ O), 165.5 (t, J(C,P) = 9 Hz, J(C,Pt) = 758 Hz, PtC=C), 167.4 (J(C,Pt) =70 Hz, C=O), 177.3 (J(C,Pt) = 13 Hz, C=O); ${}^{31}P{}^{1}H{}$ NMR (162 MHz, C_6D_6): $\delta = -24.7 (J(P,Pt) = 1791 Hz)$; ²⁹Si{¹H} NMR (79 MHz, CDCl₃): $\delta = -19.5 (J(Si,Pt) = 103 \text{ Hz});$ elemental analysis calcd (%) for $C_{36}H_{46}O_{12}P_2PtSi: C 45.24, H 4.85; found: C 45.59, H 5.05.$

Preparation of [Pt(CZ=CZ-SiPh2-CH=CZ)(PMe3)2] (6): Methyl propiolate (12.0 µL, 0.14 mmol) at room temperature was added to a toluene (4 mL) solution of 2 (80.6 mg, 0.12 mmol). The NMR spectra of the reaction mixture after 1 h showed consumption of 2. The solvent was evaporated to drvness. Addition of hexane (5 mL) to the residue caused separation of a solid which was collected by filtration, washed with hexane (2×1 mL), and dried in vacuo to give 6 (72 mg, 61%). The complex contained water which might be contained in the alkyne or solvent used in the reaction. ¹H NMR (300 MHz, C_6D_6): $\delta = 0.80$ (d, 9H, J(H,P) =9 Hz, $P(CH_3)_3$, 0.95 (d, 9H, J(H,P) = 8 Hz, J(H,Pt) = 20 Hz, $P(CH_3)_3$), 3.21 (s, 3H, OCH₃), 3.52 (s, 3H, OCH₃), 3.60 (s, 3H, OCH₃), 7.12 (m, 6 H, C₆H₅-m and p), 7.64 (m, 2H, C₆H₅-o), 7.84 (m, 2H, C₆H₅-o), 8.44 (dd, 1 H, J(H,P) = 3, 13 Hz, J(H,Pt) = 113 Hz, =CH; ¹³C[¹H] NMR (100 MHz, CD₂Cl₂): $\delta = 16.7$ (d, J(C,P) = 6 Hz, J(C,Pt) = 28 Hz, $P(CH_3)_3$, 16.9 (d, J(C,P) = 7 Hz, J(C,Pt) = 27 Hz, $P(CH_3)_{33}$, 50.9 (OCH₃), 51.6 (OCH₃), 51.8 (OCH₃), 127.6 (C₆H₅-m), 128.0 (C₆H₅-m), 129.2 (C₆H₅-p), 129.3 (C₆H₅-p), 134.7 (SiC(Z)=), 135.4 (C₆H₅-o), 135.9 (C6H5-0), 136.7 (C6H5-i), 138.5 (C6H5-i), 140.7 (SiC(H)=), 170.6 (d, C=O, J(C,P) = 9 Hz, J(C,Pt) = 105 Hz, 173.9 (appt, J(C,P) = 7 Hz, J(C,Pt)= 42 Hz, C=O), 176.5 (appt, J(C,P) = 6 Hz, J(C,Pt) not determined, C= O), 181.3 (dd, J(C,P) = 17, 112 Hz, J(C,Pt) not determined, PtC=), 187.4 $(dd, J(C,P) = 17, 112 Hz, J(C,Pt) \text{ not determined, } PtC=); {}^{31}P{}^{1}H} NMR$ $(162 \text{ MHz}, C_6 D_6): \delta = -29.5 \text{ (d, } J(P,P) = 20 \text{ Hz}, J(P,Pt) = 1904 \text{ Hz}),$ -28.5 (d, J(P,P) = 20 Hz, J(P,Pt) = 2119 Hz); elemental analysis calcd (%) for C₂₈H₃₈O₆P₂PtSi·H₂O: C 43.47, H 5.21; found: C 43.28, H 4.92.

Preparation of [Pt(CZ=CZ-SiPh2-CH=CPh)(PMe3)2] (7): Phenyl acetylene (39.1 µL, 0.36 mmol) was added to a THF (5 mL) solution of 2 (79.8 mg, 0.12 mmol). The reaction was carried out at 50 °C for 24 h. The ¹H NMR spectrum after the reaction showed consumption of **2**. The solvent was removed by evaporation. Addition of hexane (3 mL) to the residue caused separation of the product as a solid which was collected by filtration, washed with hexane (2×1 mL), and dried in vacuo to give 7. Recrystallization from THF/hexane afforded pale yellow crystals (61 mg, 66%). ¹H NMR (400 MHz, C₆D₆): $\delta = 0.58$ (d, 9H, J(H,P) = 9 Hz, $J(H,Pt) = 20 \text{ Hz}, P(CH_3)_3), 0.95 \text{ (d, 9H, } J(H,P) = 8 \text{ Hz}, J(H,Pt) =$ 18 Hz, P(CH₃)₃), 3.26 (s, 3 H, OCH₃), 3.65 (s, 3 H, OCH₃), 7.12-7.20 (the signals of C_6H_5 -p, SiC₆ H_5 -m and p are overlapped), 7.26 (t, 2H, J(H,H)) = 7.4 Hz, C_6H_5 -m), 7.48 (dd, 1 H, J(H,P) = 3, 18 Hz, J(H,Pt) = 118 Hz, =CH), 7.62 (m, 2H, SiC₆ H_5 -o), 7.85 (d, 2H, J(H,H) = 7 Hz, CC₆ H_5 -o), 8.00 (m, 2H, SiC₆H₅-o); ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): $\delta = 16.8$ (dd, $J(C,P) = 6 \text{ Hz}, J(C,Pt) = 27 \text{ Hz}, P(CH_3)_3), 16.9 \text{ (dd, } J(C,P) = 6 \text{ Hz},$ $J(C,Pt) = 24 \text{ Hz}, P(CH_3)_3), 50.7$ (OCH₃), 51.3 (OCH₃), 125.8 (J(C,Pt) = 9 Hz, SiC(Z)=), 126.6 (CC₆H₅-p), 127.5 (Si C_6 H₅-m), 127.9 (C C_6 H₅-m). 128.0 (Si C_6 H₅-m), 128.1 (Si C_6 H₅-p), 128.8 (SiC_6H_5-p) , 128.9 (CC_6H_5-o) , 135.4 (SiC₆H₅-o), 136.0 (SiC₆H₅-m), 138.0 (CC_6H_5 -*i*), 139.9 (SiC_6H_5 -*i*), 140.3 (SiC_6H_5-i) , 151.9 (J(C,P) =6 Hz, J(C,Pt) = 18 Hz, =CH), 170.7(d, J(C,P) = 12 Hz, SiCC=O), 176.6(dd, J(C,P) = 4 and 33 Hz, PtCC=O) 187.2 (d, J(C,P) = 18 and 116 Hz, PtC=), 195.2 (d, J(C,P) = 18and 121 Hz, PtC=); ³¹P{¹H} NMR $(162 \text{ MHz}, C_6 D_6): \delta = -29.0 \text{ (d,}$ J(P,P) = 20 Hz, J(P,Pt) = 2158 Hz),-28.5 (d, J(P,P) = 20 Hz, J(P,Pt) =1724 Hz): elemental analysis calcd (%) for C₃₂H₄₀O₄P₂PtSi: C 49.67, H 5.21: found: C 49.61. H 5.37.

Reactionofmethyl2-butynolatewith2:Methyl2-butynolate(22.6 mg,0.22 mmol)atroom temperatureperaturewasadded to aTHF (3 mL)solutionof2(78.5 mg,0.11 mmol).The reactionwascarriedout at50°Cfor12 h.The solventwasevaporated

to dryness. Addition of hexane (3 mL) to the residue caused separation of a solid which was collected by filtration, washed with hexane (2×3 mL), and dried in vacuo to give an equimolar mixture of [Pt(CZ=CZ-SiPh₂-CMe=CZ)(PMe₃)₂] (8) and [Pt(CZ=CZ-SiPh₂-CZ=CMe)(PMe₃)₂] (9). Repeated recrystallization of the mixture gave single crystals of 8. Xray crystallography and ¹H NMR spectroscopy showed the structure of 8 unambiguously, although analytically pure samples were not obtained. The NMR data of 9 was obtained as a mixture with 8.

Data for **8**: ¹H NMR (400 MHz, C₆D₆): $\delta = 0.93$ (d, 9H, *J*(H,P) = 9 Hz, P(CH₃)₃), 0.94 (d, 9H, *J*(H,P) = 9 Hz, P(CH₃)₃), 2.18 (dd, 3H, *J*(H,P) = 1 and 2 Hz, =CCH₃), 3.21 (s, 3H, OCH₃), 3.51 (s, 3H, OCH₃), 3.65 (s, 3 H, OCH₃), 7.10 (m, 6H, C₆H₅-m and p), 7.52 (m, 2H, C₆H₅-o), 7.91 (m, 2 H, C₆H₅-o); ³¹P[¹H] NMR (162 MHz, CDCl₃): $\delta = -28.7$ (d, *J*(P,P) = 20 Hz, *J*(P,Pt) = 1985 Hz), -27.9 (d, *J*(P,P) = 20 Hz, *J*(P,Pt) = 2134 Hz).

Data for **9**: ¹H NMR (400 MHz, C₆D₆): δ = 0.64 (d, 9H, *J*(H,P) = 9 Hz, *J*(H,Pt) = 29 Hz, P(CH₃)₃), 1.14 (d, 9H, *J*(H,P) = 9 Hz, *J*(H,Pt) = 32 Hz, P(CH₃)₃), 2.78 (s, 3H, *J*(H,Pt) = 7 Hz, =CCH₃), 3.23 (s, 3H, OCH₃), 3.36 (s, 3H, OCH₃), 3.73 (s, 3H, OCH₃), 7.33 (t, 6H, *J*(H,H) = 7 Hz, C₆H₅-*m* and *p*), 8.02 (m, 2H, C₆H₅-*o*) 8.19 (m, 2H, *J*(H,H) = 7 Hz, C₆H₅-*o*); ³¹P[¹H] NMR (162 MHz, CDCl₃): δ = −28.3 (d, *J*(P,P) = 16 Hz, *J*(P,Pt) = 3237 Hz), −24.3 (d, *J*(P,P) = 16 Hz, *J*(P,Pt) = 3752 Hz).

Crystal structure determination: Crystals of **5**, **7**, and **8** were mounted in glass capillary tubes under argon. Intensities were collected for Lorentz and polarization effects on a Rigaku AFC-5R or AFC-7R automated four-cycle diffractometer with $Mo_{K\alpha}$ radiation ($\lambda = 0.71069$ Å) and $\omega - 2\theta$ scan method. An empirical absorption correction (ψ scan) was applied. Calculations were carried out with the program package teXsan for Windows. Atomic scattering factors were obtained from the literature.^[25] Table 2 summarizes the crystal data and results of the refinement.

CCDC-214718 (5), -214719 (7) and -214720 (8) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336033; or deposit@ccdc.cam.uk).

Acknowledgment

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology.

Table 2. Crystal data and details of structure refinement of 5, 7, and 8.

formula $C_{36}H_{46}O_{12}P_2PtSi$ $C_{32}H_{40}O_4P_2PtSi$ $C_{29}H_{40}O_6P_2PtSi$ $C_{29}H_{20}O_6P_2PtSi$ $C_{29}H_{20}O_6P_2P$	
M_w 1179.06 773.79 769.75 crystal system orthorhombic orthorhombic monoclini space group Pbcn (no. 60) Pbca (no. 61) $P2_1/n$ (no. a [Å] 14.005(3) 17.143(9) 14.860(10) b [Å] 23.515(4) 26.251(14) 11.582(5) c [Å] 12.076(3) 14.723(11) 19.254(6) M_{*}^{*3} 3991 6626 3252	2PtSi
crystal system orthorhombic orthorhombic monoclini space group $Pbcn$ (no. 60) $Pbca$ (no. 61) $P2_1/n$ (no. 61) a [Å] 14.005(3) 17.143(9) 14.860(10) b [Å] 23.515(4) 26.251(14) 11.582(5) c [Å] 12.076(3) 14.723(11) 19.254(6) b [°] 101.08(4) 101.08(4)	
space group Pbcn (no. 60) Pbca (no. 61) $P2_1/n$ (no. a [Å] 14.005(3) 17.143(9) 14.860(10) b [Å] 23.515(4) 26.251(14) 11.582(5) c [Å] 12.076(3) 14.723(11) 19.254(6) b [°] 101.08(4) 101.08(4)	c
a $[Å]$ 14.005(3) 17.143(9) 14.860(10) b $[Å]$ 23.515(4) 26.251(14) 11.582(5) c $[Å]$ 12.076(3) 14.723(11) 19.254(6) b $[°]$ 101.08(4) 101.08(4) V $[Å^3]$ 3991 6626 3252	14)
$ b \begin{bmatrix} \mathring{A} \end{bmatrix} 23.515(4) 26.251(14) 11.582(5) \\ c \begin{bmatrix} \mathring{A} \end{bmatrix} 12.076(3) 14.723(11) 19.254(6) \\ 0 \end{bmatrix} $ $ b \begin{bmatrix} \circ \end{bmatrix} 101.08(4) 101.08(4) \\ 0 \end{bmatrix} $)
c [Å] 12.076(3) 14.723(11) 19.254(6) β [°] 101.08(4) 101.08(4) V [Å ³] 3991 6626 3252	
β [°] 101.08(4) V [Å ³] 3991 6626 3252	
V [Å ³] 3991 6626 3252	
0010 0010	
Z 4 8 4	
μ [mm ⁻¹] 7.175 4.384 4.470	
F(000) 2288 3088 1536	
$\rho_{\text{calcd}}[\text{g cm}^{-3}]$ 1.962 1.551 1.572	
crystal size $[mm^3]$ 0.31×0.35×0.45 0.16×0.18×0.22 0.25×0.32	×0.55
20 range [°] 5.0–55.0 5.0–50.0 5.0–55.0	
no. unique reflns ^[a] 5120 5921 2516	
no. used reflns 2601 2650 5229	
no. variables 236 361 392	
R 0.025 0.044 0.111	
R_w 0.021 0.039 0.144	
GOF 1.98 1.41 1.40	

[a] $I > 3\sigma(I)$.

- a) U. Schubert, Adv. Organomet. Chem. 1990, 30, 151; b) J. Y. Corey, J. Braddock-Wilking, Chem. Rev. 1999, 99, 175.
- [2] H. Okinoshima, K. Yamamoto, M. Kumada, J. Organomet. Chem. 1975, 86, C27.
- [3] K. Yamamoto, H. Okinoshima, M. Kumada, J. Organomet. Chem. 1970, 23, C27.
- [4] a) S. D. Grumbine, T. D. Tilley, F. P. Arnold, A. L. Rheingold, J. Am. Chem. Soc. 1993, 115, 7884; b) G. P. Mitchell, T. D. Tilley, J. Am. Chem. Soc. 1998, 120, 7635; c) J. D. Feldman, G. P. Mitchell, J. O. Nolte, T. D. Tilley, J. Am. Chem. Soc. 1998, 120, 11184; d) G. P. Mitchell, T. D. Tilley, Angew. Chem. 1998, 110, 2602; Angew. Chem. Int. Ed. 1998, 37, 2524.
- [5] H. Yamashita, M. Tanaka, M. Goto, Organometallics 1992, 11, 3227.
- [6] a) D. Seyferth, S. C. Vick, M. L. Shannon, T. F. O. Lim, D. P. Duncan, J. Organomet. Chem. 1977, 135, C37; b) D. Seyferth, D. P. Duncan, S. C. Vick, J. Organomet. Chem. 1977, 125, C5; c) D. Seyferth, M. L. Shannon, S. C. Vick, T. F. O. Lim, Organometallics 1985, 4, 57.
- [7] H. Sakurai, Y. Kamiyama, Y. Nakadaira, J. Am. Chem. Soc. 1977, 99, 3879.
- [8] a) M. Ishikawa, H. Sugisawa, O. Harata, M. Kumada, J. Organomet. Chem. 1981, 217, 43; b) M. Ishikawa, S. Matsuzawa, K. Hirotsu, S. Kamitori, T. Higuchi, Organometallics 1984, 3, 1930; c) M. Ishikawa, S. Matsuzawa, T. Higuchi, S. Kamitori, K. Hirotsu, Organometallics 1985, 4, 2040; d) M. Ishikawa, Y. Nomura, E. Tozaki, A. Kunai, J. Ohshita, J. Organomet. Chem. 1990, 399, 205
- [9] a) W. S. Palmer, K. A. Woerpel, Organometallics 1997, 16, 1097;
 b) W. S. Palmer, K. A. Woerpel, Organometallics 1997, 16, 4824;
 c) W. S. Palmer, K. A. Woerpel, Organometallics 2001, 20, 3691.
- [10] L. S. Chang, M. P. Johnson, M. J. Fink, Organometallics 1991, 10, 1219.
- [11] a) M. Ishikawa, J. Ohshita, Y. Ito, J. Iyoda, J. Am. Chem. Soc. 1986, 108, 7417; b) J. Ohshita, Y. Isomura, M. Ishikawa, Organometallics 1989, 8, 2050.
- [12] Other four-membered silametallacycles: a) R. J. P. Corriu, B. P. S. Chauhan, G. F. Lanneau, *Organometallics* 1995, *14*, 1646; b) B. P. S. Chauhan, R. J. P. Corriu, G. F. Lanneau, C. Priou, *Organometallics* 1995, *14*, 1657; c) G. P. Mitchell, T. D. Tilley, *J. Am. Chem. Soc.* 1997, *119*, 11236; d) M. Tanabe, H. Yamazawa, K. Osakada, *Organometallics* 2001, *20*, 4451.
- [13] M. Tanabe, K. Osakada, J. Am. Chem. Soc. 2002, 124, 4550.
- [14] Y.-J. Kim, J.-I. Park, S.-C. Lee, K. Osakada, M. Tanabe, J.-C. Choi, T. Koizumi, T. Yamamoto, *Organometallics* 1999, 18, 1349.

- [15] a) A. Bottoni, A. P. Higueruelo, G. P. Misclone, J. Am. Chem. Soc. 2002, 124, 5506; b) C. Eaborn, T. N. Metham, A. Pidcock, J. Organomet. Chem. 1977, 131, 377; c) F. Ozawa, T. Hikida, T. Hayashi, J. Am. Chem. Soc. 1994, 116, 2844; d) F. Ozawa, T. Hikida, Organometallics 1996, 15, 4501; e) F. Ozawa, J. Organomet. Chem. 2000, 611, 332.
- [16] A. Bondi, J. Phys. Chem. 1964, 68, 441.
- [17] T. M. Stefanac, M. A. Brook, R. Stan, *Macromolecules* 1996, 29, 4549.
- [18] R. H. Crabtree, Chem. Rev. 1985, 85, 245.
- [19] a) A. Albinati, C. G. Anklin, F. Ganazzoli, H. Rüegg, P. S. Pregosin, *Inorg. Chem.* **1987**, *26*, 503; b) A. Albinati, C. Arz, P. S. Pregosin, *Inorg. Chem.* **1987**, *26*, 508; c) A. Albinati, P. S. Pregosin, F. Wombacher, *Inorg. Chem.* **1990**, *29*, 1812.
- [20] a) I. C. M. Wehman-Ooyevaar, D. M. Grove, P. van der Sluis, A. L. Spek, G. van Koten, J. Chem. Soc. Chem. Commun. 1990, 1367; b) I. C. M. Wehman-Ooyevaar, D. M. Grove, H. Kooijman, P. van der Sluis, A. L. Spek, G. van Koten, J. Am. Chem. Soc. 1992, 114, 9916; c) T. Yoshida, K. Tani, T. Yamagata, T. Tatsuno, T. Saito, J. Chem. Soc. Chem. Commun. 1990, 292; d) T. Kawamoto, I. Nagasawa, H. Kuma, Y. Kushi, Inorg. Chem. 1996, 35, 2427.

- [21] U. Burckhardt, G. L. Casty, J. Gavenonis, T. D. Tilley, Organometallics 2002, 21, 3108. For γ-C–H agostic interactions, see also: H. Urtel, C. Meier, F. Eisenträger, F. Rominger, J. P. Joschek, P. Hofmann, Angew. Chem. 2001, 113, 803; Angew. Chem. Int. Ed. 2001, 40, 781.
- [22] M. Tanabe, M. Horie, K. Osakada, Organometallics 2003, 22, 373.
- [23] a) J. M. Huggins, R. G. Bergman, J. Am. Chem. Soc. 1981, 103, 3002;
 b) E. G. Samsel, J. R. Norton, J. Am. Chem. Soc. 1984, 106, 5505;
 c) P. de Vaal, A. Dedieu, J. Organomet. Chem. 1994, 478, 121;
 d) A. D. Ryabov, R. van Eldik, G. Leborgne, M. Pheffer, Organometallics 1993, 12, 1386;
 e) W. Ferstl, I. K. Sakodinskaya, N. Beydoum-Sutter, G. Le Borgne, M. Pheffer, Organometallics 1997, 16, 411;
 f) M. Martinez, G. Muller, M. Panyella, M. Rocamora, X. Solans, M. Font-Bardía, Organometallics 1995, 14, 5552;
 g) A. M. LaPointe, M. Brookhart, Organometallics 1998, 17, 1530.
- [24] D. C. Smith Jr., C. M. Haar, E. D. Stevens, S. P. Nolan, W. J. Marshall, K. G. Moloy, *Organometallics* 2000, 19, 1427.
- [25] International Tables for X-ray Crystallograhy, Vol. 4, Kynoch, Birmingham, England, 1974.

Received: July 17, 2003 [F5344]